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An analysis is presented of the flow field near a neutrally-buoyant rigid spherical 
particle immersed in an incompressible Newtonian fluid which, a t  large distances 
from the particle, is undergoing simple shear flow. Subject to conditions of 
continuity of stress at  the particle surface and to conditions of zero net torque 
and zero net force on the sphere, the effect of fluid inertia on the velocity and 
pressure fields in the vicinity of the particle has been computed to O(R*), where 
R = u2G/v is a shear Reynolds number, u being the sphere radius, G the velocity 
gradient in the free stream (taken to be a positive number), and v the kinematic 
viscosity. 

Some streamlines have been computed and plotted. These illustrate how the 
fore-aft symmetry of the creeping-motion solution is destroyed when one 
includes inertial effects. 

Knowledge of the velocity and pressure fields enables one to compute the 
effect of inertial forces in suspension rheology . The results include a correction 
to the Einstein viscosity law to O(R*) for a dilute (non-interacting) suspension 
of spheres. In addition it is found that inertial effects give rise to a non-isotropic 
normal stress. 

1. Introduction 
Development and application of singular perturbation techniques by Kaplun 

& Lagerstrom (1957) and Proudman & Pearson (1957) to the classical Stokes 
problem have resulted in renewed and continuing interest in the effects of inertia 
on low Reynolds number flows of particulate systems. Of special interest is the 
application of singular perturbation methods to problems dealing with the 
behaviour of particulate matter in shear flows. Saffman (1965) has shown that 
a sphere, when moving relative to a fluid undergoing uniform simple shear, 
experiences a lift force transverse to the direction of fluid and particle motion. 
The lift is a direct consequence of inertial effects. Harper & Chang (1968) have 
generalized Saffman’s analysis to the case of any three-dimensional body and 
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have related a lift tensor to  the Stokes translation dyadic for the body. An 
essential feature of the papers of Saffman and of Harper & Chang is the role 
played by the velocity of the particle relative to the undisturbed fluid velocity 
a t  the position occupied by the particle. Indeed, the lift force is proportional to  
this relative velocity. 

In the present paper we treat a related but different problem. Consider 
a neutrally buoyant spherical particle immersed in an incompressible Newtonian 
fluid which, a t  large distances from the particle, is in a state of simple shear flow. 
Subject to conditions of continuity of stress and velocity a t  the particle surface 
and to conditions of zero net torque and zero net force on the sphere, we ask the 
following question: What is the effect of fluid inertia on the velocity and pressure 
fields in the vicinity of the particle 1 This question is asked for two reasons. First, 
i t  is of interest to know the extent to which an accounting of inertia alters the 
well-known creeping-motion solution, as presented, for example, by Landau & 
Lifshitz (1959, p. 76). Secondly, one can apply knowledge of the velocity field, 
including inertial effects, to computation of the rheological behaviour of a dilute 
suspension of spheres flowing at small but non-zero Reynolds number. 

We have computed the fluid velocity field near the particle to  O(Rh),  where 
R = a2G'p/p is a shear Reynolds number based upon particle radius a, velocity 
gradient of unperturbed fluid G ,  fluid density p and fluid viscosity p. Essential 
features of the outer solution were found by application of a Fourier transforma- 
tion procedure simi1a.r to that employed by Saffman, who in turn modified 
a device introduced by Childress (1964). The flow field near the particle was then 
used to  compute the constitutive equation, including terms to  O(Rh), for a system 
of dilute (i.e. non-interacting) neutrally-buoyant rigid spheres uniformly distri- 
buted in an incompressible Newtonian fluid. Not only is the shear viscosity 
altered from the classical result of Einstein, but the system exhibits normal 
stresses which a.re caused by inertial effects. The results for a fluid with viscosity p 
are, to O($) ,  

p, = p[ l+$($+ 1-34Rt)] ,  
tkx - ti, = pG$R[ - 8 + O.O35Rh], 

tig - ti, = pG$R[+ - 0.2521263. 

p, is the suspension viscosity and t l j  refers to components of the stress tensor with 
respect to a co-ordinate system in which the bulk flow has the velocity 
(wx, vu, w,) = (Gy, 0,O).  Volume fraction of solids is 4, and G z 0 is the (constant) 
average shear rate of the suspension. 

The problem is formulated in the next section. This is followed in $ 3  by 
development of expansions for the velocity and pressure fields and an exposition 
of the matching technique. Some sample streamlines around a single sphere are 
presented in $4, while the subject of suspension rheology is considered in 5 5. 

2. Formulation of the problem 
An incompressible Newtonian fluid is in steady shear flow past a neutrally- 

buoyant rigid sphere which is freely suspended in the fluid, We describe the flow 
field with respect to  a fixed co-ordinate system the origin of which is a t  the centre 
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of the sphere. Fluid velocity at infinity is taken to be 

uk = Gy'ez, 

3 

where e, is a unit vector in the x' direction. Subject to the condition of free sus- 
pension of the sphere, i.e. no net force or torque on the sphere, we allow for 
rotation SZ' about the centre of the sphere. One can also include a velocity of 
translation of the sphere V'. However, because of symmetry we can set V = 0 in 
the present problem. Governing equations for the fluid velocity u' are the steady- 
state Navier-Stokes equation and the continuity equation together with the 
boundary conditions of no slip at the particle surface and the requirements that 
u'-tul, and p'+p', = constant as Ir'l-+co. It is convenient to define the 
following non-dimensional quantities : 

r = r'la, u = u'/aG, p = p'lpG, p w  = pL/pG, 

V = V'/aG = 0 and SZ = SZ'/G. 

In terms of these dimensionless variables the governing equations are 

-vp+v2u = R u . V u  (2.1 a )  

v .u  = 0 ,  
with boundary condit.ions 

u = Q x r  at Irl = 1, 

(2.1 b )  

(2.2 a )  

u-tye, and p+pw as Irl-tco, (2.2b) 

Q being determined by the condition of free suspension, 

3. Inner and outer expansions 
(a)  Inner expansion 

Following earlier workers we assume that in the inner region of the flow, i.e. 
where r = Irl = O ( l ) ,  the expansions for the flow variables u, p ,  V and SZ are 

{u, P ,  V ,  n> = C fn(R) {Un,Pn, Vn, an}, ( 3 . l a )  
of the form m 

n=O 

with (3.1 b )  

In  accord with custom we designate (3 .1  a)  as the inner or Stokes expansion and 
take f,,(R) = 1. Individual terms of  the expansion (3 .1  a)  are required to satisfy 
(2.1) and the no-slip condition (2.2 a).  Since (3.1) is invalid at  large values of r ,  we 
replace the boundary condition (2.2 b )  by the requirement that (3.1) match an 
expansion which is valid far from the sphere. 

Substituting (3.1 a)  into (2.1) and (2.2 a )  and equating coefficients of the same 
order of magnitude in R, one obtains the governing equations for each pair 

( 3 . 2 ~ )  

v.un = 0. (3.2 b)  
1-2 
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Since V, = 0, the surface boundary condition is 
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u, = Q2,xr at r = 1. (3.3) 

The double summation in (3.2 a )  is restricted to those terms for which 

Rh (R)fm(R) = fn(R)* 
The condition (3.1 b)  ensures that Z and m must be less than n. Consequently, for 
any value of n, the summation term only contains contributions from lower-order 
solutions, and in an iteration scheme these contributions will be known. Thus 
(3.2a) constitutes a set of linear inhomogeneous equations, each of which is 
formally equivalent to the Stokes equation modified for the presence of an 
external volume force (see, for example, Brenner 1966). Let 

g, (uO,u1, ***,Un-1)  = -Z  X (u, .Vum) 
l m  

denote the equivalent dimensionless force per unit volume which is exerted on 
the fluid at some point by the surroundings. Then 

- V p ,  + VZU, = - g,. (3.2a') 

Because of the linearity of (3.2) and (3 .3)  the solutions can be decomposed into 
homogeneous and particular parts, 

un = unh+unp,  Pn = pnh+Pnp, (3.4a, b )  

where - Vpnh + v2unh = 0, v .  U,h = 0, (3.5 a, b )  

with the boundary condition u,h = 8, x r at r = 1, and 

( 3 . 6 ~ )  b )  

with the boundary condition u,, = 0 at r = 1. The solutions (unh, pnh) and 
{unP,pnp} are given in appendix A. 

The condition of free suspension is similarly decomposed. The hydrodynamic 
force F and torque T (about the centre of the sphere) are expanded as follows: 

m 

We require Fnh + Fnp = T,, + T,, = 0, (3.8) 

where the subscripts nh and np designate contributions arising from the velocity 
and pressure fields satisfying (3.5) and (3.6)) respectively. The requirement (3.8) 
fixes angular velocity 9, in the boundary condition to (3.5). 

( b )  Outer expansion 

The flow field far from the particle is conveniently described by changing vari- 
ables so that the Reynolds number does not appear explicitly in the equation of 
motion. Thus we scale independent and dependent variables by the trans- 
formations i: = Rh, t i =  R h  and @ = p ,  

so that (2.1) becomes -afj+v2fi = fi.ati, v.ti = 0. (3.10a, b)  

(3.9) 
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The outer expansion (Oseen expansion) is assumed to have the form 

5 

m 

{a7 P )  = C yn(R) {fin, pn}) ( 3 . 1 1 ~ )  

where lim[Fn+,/Fn] = 0 (3.11 b) 

and we take Po(R) = 1. 
Terms of the outer expansion (3.11) are required to satisfy the differential 

equations (3.10) and, as i = I?\ +oo, must approach a uniform shear field. How- 
ever, the no-slip condition on the sphere is replaced by the condition that (3.11) 
must match with the Stokes expansion (3.1). 

Upon substitution of (3.11 a) into (3 .10)  and (2.2 b)  one obtains, after equating 
coefficients of the same order of magnitude of R in each equation, the governing 
equations for each pair { f in ,&}  in the outer expansion; viz. 

n=O 

R-0 

aa, 
ax 1=1 m = l  

- V p n + V 2 i i n - g 7 - ~ n y e ,  = 2 ii , .Vii, ( 3 . 1 2 ~ )  

(3.12 b )  
(Fn = Fz Fm) 

0 .  a,,& = 0, 

for n = 0, 

for n > 0, 
with boundary conditions iin = {F ( 3 . 1 3 ~ )  

(3.13b) 

Following the notation of (3.2a),  we note that the double summation in (3.12a) 
is limited to those terms for which 4(R)Fm(R) = Pn(R). Thus 1 and m must be 
less than n, and the terms on the right-hand side of (3.12 a) will be known in any 
iteration scheme. Hence (3.12 a) is a linear inhomogeneous equation of the Oseen 
type and the right-hand side can be replaced by the force term 

Gn(iil, . . ., fin-,) = -z C i l l .  96,. 
I m  

For the case n = 1 we have G, = 0, so that 

( 3.1 4 a) 

V.u, = 0, (3.14b) 

with boundary conditions (anticipating that ti,, will match the free-stream 
boundary condition) 

a,=O and @ , = O  as P+m. (3.15) 

- V ~ l + V ~ i i l - y Y - ~ l y e ,  - afi, = 0, 
ax 

The matching principle can be stated by (Van Dyke 1964, p. 89) 

Rilimu(r) = lim a(?) and limp(r) = lim @(F). (3.16) 

Now let o,(f) and pl(?) be the contributions of the inner expansion, expressed 
in outer variable ii;, to the outer terms fi,(ii;) and pl(P), respectively. Then (3.16) 

(3.17) 
implies fil+ol and pl-.Pl as F+O, 

r+m i - t O  r+w T+O 
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and we seek a solution to (3.14) subject to (3.15) and (3.17). Since this solution is 
difficult to obtain, it is fortunate that the flow field close to the particle is usually 
of primary interest and this result can be found if one knows only certain general 
properties of the outer expansion. 

(c) Leading terms of the expansions 

In  the limit R+ 0 the expansions for the velocity field (3.1) and (3.1 1) reduce to 
u + u, and ii + ii,. For the outer flow we see that the differential equation and the 
boundary conditions are satisfied by identifying 6, with the undisturbed flow, 
ii, = y"ez, 17, = pm. The inner solution u, is just the Stokes solution to the creeping- 
motion equations which satisfies the surface boundary condition 

uO = voh+ (llr3) r), Po = qoh,  (3.18 a, b )  

where vOh and qOh are given in appendix A. Constants appearing in V 0 h  and qOh are 
found from the requirement that (3.18), when expressed in terms of f ,  should 
contain no terms of order, with respect to R, greater than unity. Non-zero con- 
stants are C& = - &, Bg,2 = & and A!,o = pm. In addition the condition of free 
suspension (zero net force and torque on the sphere) leads to 8, = -&e,. Thus 

u,=e ,  [ Y - ~ - -  5x2y( 1 - -  

( d )  Higher terms of the expansions 

When (3.19a) is expressed in terms of outer variables, its contribution to  ii is 

(3.20) 

The first term is ii,, while the requirement for matching of inner and outer 

(3.21) 
solutions suggests that 

We next seek the form of fi(R) ul. One can infer from (A 9 a )  that u, and pn 
are linear combinations of terms of the form ((xzymzn/rk) (ln r ) f } ,  where j, k, I, m, 
and n are zero or positive integers. Furthermore, since the transformation factor 
between inner and outer variables is Rfr, {f,(R)) and (Fn(R)} must be of the form 
{R*i (In R)i}, where i and j are integers and j >, 0. With this in mind we consider 
possible inner expansions R < f,(R) < 1 ; e.g. R*, R*ln R, etc. In all of these cases 
the constraint on the right-hand side of ( 3 . 2 ~ )  ensures g, = 0. Then the general 
solutions for ul and p1 are merely (3.18), with VOh, qOh and S2, replaced by vzh, qzh 
and QZ, respectively. Expressing these results in terms of outer variables and 
requiring, in view of (3.21), that there be no contribution to ii with a Reynolds 
number dependence greater than O(RP), one concludes that 

F,(R) = Rt. 

Vlh  = 0; qlh = 0. (3.22) 
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This result along with the requirement following from the free-suspension condi- 
tion, viz. V, = Ql = 0, ensures that the terms f,(R) ul and f i ( R ) p ,  are zero for 
R < f,(R) < 1. Now we are in a position to consider f,(R) = R. In  this case the 
governing equations for U, and p ,  will be ( 3 . 2 )  with gl = - u, . Vu, and bounda,ry 
condition ( 3 . 3 ) .  The general solution is 

u1 = vlh+ (W (al x r) +u1,, P ,  = qlh +pip. ( 3 . 2 3 a ,  b )  

The particular solutions ul, and pl, have been derived by Peery ( 1  9 6 6 )  and a.re 
available from the authors upon request. From the requirement that no terms 
in u1 or p ,  can exist which, when written in outer variables, are larger than 

1 
O(Rt),  one finds ATj = C& = 0 for all j ,  

BCj = 0 for j 2 2 .  
( 3 . 2 4 )  

Fortunately, and somewhat surprisingly, the first-order outer solution is not 
required for the complete determination of U, and p,. This is so because u,?, and 
p l p  do not contribute to the force or torque on the particle, and the free-suspension 
condition requires that BYl = 0 and Q, = 0 (see appendix B). Therefore, 
u1 = ulp, Pl = P 1 p -  

One can readily show that terms of order R$(ln R)i or R# are solutions of the 
homogeneous Stokes equations. Hence we may write, for the moment, f2(R) = R3 
and allow the possibility that the arbitrary constants in vZh and qZh may contain 
1nR. Application of the matching condition that no terms appear which are 
larger than Rt  (possibly multiplied by a function of In R) leads to 

i 
= 0 all j ,  

BTj = 0 (j 2 3), 

C& = 0 ( j  2 2 ) .  
Then from appendix B, 

Q, = Cit, e, + Ci, , e, + C:, , e,, 

( 3 . 2 5 )  

( 3 . 2 6 ~ )  

V, = 0 = B~tlez+B,l , ,e,+B:, ,e, ,  (3 .26  b )  

where values of the non-zero coefficients are to be found from matching inner 
and outer solutions. 

It is convenient to designate contributions of u,, ul, andu, to 6, by A, B, and C, 
respectively. Then 

(3.27 a )  



8 C-J .  Lin, J .  H .  Peery and W .  R. Schowalter 

Following the procedure of Saffman (1965), we express the solution of ( 3 . 1 4 a ) ,  
subject to (3.151, by 

fil = (H(')(F)/P) + H(1)(F)+r"H(2)(f)+PH(3)(f) + ..., (3 .28)  

where the HCi) are homogeneous functions of degree zero in d, y", and 2. Matching 
( 3 . 2 8 )  with the inner expansion suggests that  iil and the inner solutions uo, ul, 
and u2 are connected by 

(H(O)(P)/F2) = A, H(')(F) = B, I;H(2)(F) = C. (3.29) 

One can readily verify that 

-VPo+V2A = 0, O . A  = 0,  (3.30a, b )  

-TLP~+V~B = y"aA/aO+A,e,, O . B  = 0, (3 .31  a, b )  

where Po and Pl are contributions of po and pl, respectively, to  pl. 
Combining ( 3 . 1 4 ) ,  ( 3 . 3 0 ) ,  and ( 3 . 3 1 ) ,  we obtain 

aB 
~ ( F l - ~ o - ~ l ) +  .(al- A - B) = - g7-B,ez, ( 3 . 3 2 a )  

ax 

O . & - A - B )  = 0. 

The Fourier tra.nsformation of ( 3 . 3 2 )  is 

where 

k . r  = 0, 

(iil-A-B)e-ik"ddF, 

( f j l - P o - P l ) e - i k " d f ,  

( 3 . 3 2 b )  

(3.33 a)  

( 3 . 3 3 b )  

From ( 3 . 3 3 )  one readily obtains a set of equations for the components of I'(k), 

and 

the solutions to which are given by 

(3 .35  a )  
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(3.35c) 

where p = t ( k 2 + k x k , t +  &tzc2). 

expansion. This is readily checked by studying the behaviour of 
We now consider the possibility that terms of order R8 In R exist in the inner 

V(G,-A-B)+VC as 7+0. 

If (VC)i+o is bounded, then we conclude that no logarithmic term is present, and 
the undetermined coefficients in u, are independent of Reynolds number. It 
will be shown below that the equivalent of (VC)?+,, , viz. 

is indeed bounded. Thus we conclude that the Reynolds number dependence of 
f,(R) u2 is R8. 

Our next step is to evaluate the undetermined constants in u2 by employing 
an adaptation of the Fourier transformation technique of Childress (1964) and 
Saffman (1965). 

From (3.28) one can write 
m 

[~( i i , -A-B)];=,  = (TC) = ( ikrdk. (3.36)t 
J --m 

From (3.35) it is apparent that 

and it then follows from ( 3 . 2 7 ~ )  that Bif, = Bi,2 = Ci,l = CiTl = 0. From 
(3 .27~)  one can now write 

C = e,[ (6Biy2 - B$g) 2 + ( 6&, 2 - C$, 1) y"] 

so that ikrdk = 

The unknown coefficients can be found from numerical integration of four 
independent components of the left-hand side of (3.37). The integrals chosen 
were 

t Whenever a quantity having physical significance is related to a complex expression, 
we of course refer only t o  the real part. 
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The first two can be reduced to double definite integrals, while the last two 
involve both double and triple integrals. Details of the reduction are available 
from the authors upon request. One obtains 

B,:, = 0.00479, B;,, = 0.00724, Bi,2 = 0.0448, 

c!,, = 0.1538, 

along with the requirement, which follows from the condition of zero transla- 
tional velocity, that  Bit, = @, = Bl, , = 0. 

Employing (A 5) we finally have 

4. Streamlines around a single sphere 

O(R9) from 

with surface boundary conditions 

The velocity field in the neighbourhood of a sphere ca.n now be evaluated to  

u = uo + Ru, t Rhl, (4.1) 

V = 0, a= -($-O*1538R3)e2. (4.2a, 6 )  

The solution of (4.1) which meets boundary conditions (4.2) is of course valid 
only in a region near the sphere, the extent of this region increasing with 
decreasing R. Streamlines may be found from solution of the defining equations 

(4.3) dxlu, = dy/u, = dx/u,. 

For illustrative purposes several streamlines have been computed which lie in 
the plane z = 0. Since an explicit solution to  the outer expansion is not known 
beyond the first term, the streamlines computed from (4.1) and (4.3) are only 
valid close to the sphere. The solution was obtained by numerical integration, 
using a Runge-Kutta technique, of 

(~Y/d42=0 = ( ~ y / U z ) , = o .  

Some of the results for R = 0.5 are shown in figures 1 and 2. A comparison 
between streamlines of the creeping motion solution and the first-order approxi- 
mation (to O ( R ) )  for V = 0 and = -Bez, and between the creeping-motion 
solution and second-order approximation (to O(R9))  with surface conditions (4.2) 
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is shown in figure 1 and figure 2, respectively. For both cases the two families of 
streamlines are matched on the y axis. Because of the antisymmetric nature of 
the flow, only the region y 0 is shown. It is seen that the fore-aft symmetry of 
the creeping-flow solution is destroyed when the effect of Reynolds number is 
considered. The restricted region of applicability of the inner expansion is also 
clearly shown. Though the creeping-motion solution is bounded in the whole 
domain, one notes from figure 2 that the second-order approximation to the 
inner expansion severely distorts the streamlines at  sufficiently large r .  Fortu- 
nately, one is usually most interested in the contribution of inertia to the flow 
field near the sphere, where the second-order correction is valid. 

2.0 

1 .o 

0 
-2.0 -1.0 0 1 .o 2.0 

FIGURE 1 .  Streamlinesin the plane z = 0, R = 0.50, D = -.$e,. Solidlinesrepresent 
creeping-motion solution; dashed lines represent first-order approximation ( O ( R ) ) .  

I 

- 2.0 - 1.0 0 1 .o 2.0 

FIGURE 2. Streamlines in the plane z = 0. R = 0.50, D = - (:-0.1538R*)e2. Solid lines 
represent creeping-motion solution ; dashed lines represent second-order approximation 
(O(R4)). 
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5. Suspension rheology 
Attempts to relate the microscopic flow field around a single particle to the 

macroscopic behaviour of an assembly of particles in a continuous fluid phase 
have been numerous and varied, and begin with the classic work of Einstein 
(1906, 1911). Batchelor (1970) has provided a new assessment of the means by 
which one proceeds from a knowledge of microscopic flow behaviour to an 
expression of bulk stress in a suspension. I n  particular, the contribution which 
a momentum flux term can make to an expression for the bulk stress has been 
shown. 

Following earlier workers we consider a dilute homogeneous suspension of 
neutrally-buoyant particles which is subjected to steady shear. A connexion is 
then made between the stress field around a single particle and the average stress 
and average strain rate of the suspension. The purpose of the present computation 
is to show the effect of a non-zero Reynolds number on the rheological behaviour 
of the suspension. For the dilute (non-interacting) suspension of rigid spheres 
which we are considering, the dimensionless stress tensor {t} of the suspension 
in plane Couette flow may be represented in terms of the stress on a single sphere. 
The expression for bulk stress given by Batchelor (1970) reduces, in dimensionless 
form, to 

where $ is the volume fraction of the spheres and ta is the dimensionless stress 
tensor on the surface of a single sphere. In addition to the terms familiar from 
earlier treatments of bulk stress (see, for example, Landau & Lifshitz 1959), two 
additional contributions arise which are O(R). The first is a contribution to bulk 
stress from local acceleration a within the spheres. Integration is over the volume 
V ,  of one sphere. The second, representing a momentum flux contribution, is an 
integral taken over a single sphere and the surrounding fluid field. Since the fluid 
is incompressible, the stress can only be specified to within an arbitrary isotropic 
stress TI. 

On the surface of the sphere we have 

t.e, = t ,  = -e ,p+ --- +-V(r .u ) ,  (: :) : 
which can be combined with 

u = u0 + Ru, + R h 2  + o(R+),  

p = po + Rpl + R8p2 + o(R%), 

(5 .3a)  

( 5 . 3 b )  

to give = tFo + RtFl + RQtp2 + o(R8). (5.4) 

Combining (5.1) to (5.4) and evaluating the integrals (appendix B) one finally 
obtains the rectangular Cartesian components of ( t }  to O(R8). Expressed in 
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-R$[ - 169 - 91 ., 
4 2 0  4 2 0  1 + ;$ + 30@, R3$ 0 

R$[ - 15% + 463 
+ (30B,f,- 5B!, 2)R:]  

0 4 2 0  4 2 0  [(t'} + T'I] = pG 1 + + 30Bt, R$$ - (30&f, + 5B!, JRt]  
R$[ - 40 + &4- 0 4 2 0  4 2 0  

+ 1 OB!, B4]- 
0 

- 

13 

t,& - tia = pG$R[ - 4 + 0.035R41, (5.6 b )  

tb2, - tLz = pG#R[$ - 0*252R&]. (5.6 c) 

Generalizahion of (5.6) to  an arbitrary homogeneous shear field aui/axj appears 
to  require further computation. Professor Acrivos has pointed out to  the authors 
that the O(R) correction to  the Einstein expression must be quadratic in aui/axj 
(used here to denote the bulk velocity gradient) and, consequently, one expects 
the correction, t o  within some arbitrary isotropic part, t o  have the form 

I n  the case treated here (aui/axi = 0 except for i = 1, j = 2) the coefficient of 
a, is zero. 

Unfortunately, there are no data available to  which these predictions for 
rheological behaviour of dilute suspensions can be compared. The importance of 
the calculation, which is of course valid only at low Reynolds numbers, is 
primarily in its qualitative features. For example, we find that the effect of 
inertia at sufficiently low R is to  cause the suspension viscosity to increase with 
increasing shear rate. Furthermore, i t  is apparent from (5.6) that the so-called 
'secondary ' normal stress difference (t l ,  - tiz) is positive and has a magnitude 
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comparable to the negative 'primary' normal stress difference (t;, - tiz). That 
these results are quite different from the observed behaviour of most dilute 
polymer solutions, which typically display both a shear dependent viscosity and 
unequal normal stress components, is not surprising. To effect correspondence 
between rheological behaviour of a suspension and a polymer solution one must 
evidently, at the very least, account for deformation of the discontinuous phase. 
An initial attempt to  account for deformation has been made by Schowalter et al. 
(1968). 
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Appendix A. Solution of the creeping-motion equations 
Consider first the homogeneous equations 

- Vpnh + '02unh, = 0, v. unh = 0 (A 1 a,b)  

unh = Vn+IRnxr at r = 1. (A 2)1. 

with boundary conditions 

The general solution t o  (A 1) can be expressed in spherical co-ordimtes in the 
form presented by Lamb (1945) 

where , Y ~ , ~ ,  and Qn,j are each solid spherical harmonics. 
Boundary conditions may be incorporated into the solution (A 3) by employing 

the techniques of Happel & Brenner (1965, p. 62 et seg.). One eventually obtains 

for j 2 1, where Sjl is the Kronecker delta and the Q:, j, are surface spherical 
harmonics defined by Qn,j  = riQ:,i. ~ g , ~  and a)$,j are similarly defined. 

retain contributions V, to V in this general development. 
Though In the present problem the velocity of translation V = 0, i t  is convenient to 
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From (A 3) and (A 4), 

15 

1 
unh = Vnh+vn (:+ $) + p (1 - f) (v,. r )  + r3 - Q, x r, (A 5 a )  

It is convenient to make the substitutions 

where 

Pj.ml(cos 8) is the associated Legendre polynomial of the first kind of order j and 
rank [ml. 

We also desire a solution to the inhomogeneous Stokes equations 

- VpnP + V2u, = - g,(r), V .  unp = 0,  (A 7 a ,  b )  

unp = 0 at r = 1. (A 8) 

which satisfies the boundary condition 

By using dyadic Green's functions (Morse & Feshbach 1953, p. 1769 et ~ e q . )  
one can show that 

unp = u0,P +Ik $ eikr [ I-:] .y,(k) dk, (A 9 a )  

where y,(k) is the Fourier transform of g,(r) 

The quantities uip and&, are given by expressions of the form (A 3). Coefficients 
of the harmonics are chosen so that the boundary condition (A 8) is satisfied. 
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Appendix B. Consequences of the free-suspension boundary condition 
Following the division of velocity and pressure into homogeneous and parti- 

cular parts (3.4), we can designate the contributions of these quantities to the 
stress vector (5 .2 )  on the surface of the sphere by 

t r  = x, fn(R)trn = xfn(R) (trnh+frnp)* (B 1 )  

Then, from the condition of free suspension (3.8) we have 

F, = F,h + F, = 0 = Is trnh dS +Js t,, dS, (B 2a)  

For the problem under consideration here we have established ($3) that the 
inner solution has the following homogeneous and particular parts : 

{uO,pO) = (UOh,pOh}, 

{ U l , P l I  = { U l P , P l P h  

{UZ,Pd = ~ ~ Z h , P Z h } .  

One can verify, by direct substitution of uln andp,, into (5.2) and integration of 
the particular portions of (B 2), that F, = T, = 0. Thus, to the order ofapproxi- 
mation employed here, we need only be concerned with the homogeneous contri- 
butions to F and T. From Happel & Brenner (1965) we can write for a spherical 
surface 

( j - l )Vx(rxn, j )+2(j - l )VQn,j  

- (2j2+4j+3)  j(j+ T ~ V Q , ~ ] ,  (B 3) 
( j +  1) (2j+ 3) rQnyi+(j+ 1 )  (2j+ 3) 

from which it readily follows that 

F,h = 0 = I trnh dX = - 4?rV(r3Q,, -,), 

T n h  = o = 1 r x t,, dS = - 8nv(r3xn, J. 

SZ, = (7;; ex + CL,l ey + Ci, e, 

(B 4al 

(B 4b)  

Combining (B 4) with (A 4 a)  and (A 4 c), we have 

(B 5 )  

and V n = 0 = ( ~ A ~ , ~ + B , ~ ) e , + ( Q A ~ , , + B ~ , , ) e , + ( g A O , , , + B O , , , ) e , .  (BB) 

Recall that in $ 3 all 
We next consider evaluation of the first integral in (5.1). The contribution 

from to, leads to the well-known Einstein correction. The contribution from t, 
was found by direct calculation using ulP, plp and (5.2). Evaluation of the effect 
of t,, is facilitated through rearrangement of (B3) ,  which can be written to 

were shown to be zero for n = 0,1 ,2 .  
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apply at  T = 1 as 

17 

One can readily show that for a,n arbitrary solid spherical harmonic Hi of orderj, 

Using (B 8) along with the knowledge (8  3) that &I,j = 0, one can write 

Carrying out the integration one obtains, in rectangular Cartesian components, 

4 o e ,  2 

- (40&:2 + YB!, 2) 

- 40BO 
0 3 ' 4 2  

Combination of contributions to {t} from different orders in R leads to (5 .5) .  
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